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Protein structure prediction
---from sequence to structure
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Ways to Obtain Protein Structures

» Wet lab methods: X-ray and NMR

» $150k per structure
» 0.5 year
» Still need computational methods anyways

» Computational methods

» Homology modelling — PSI-BLAST

» Threading — RAPTOR

» Fragment Assembly (ROSETTA) and Fragment-HMM
(FALCON).

» Consensus



Prediction strategy 1: homology modeling

» Basic idea: two proteins usually adopt similar structure if they
share similar sequence similarity.

» Technique: sequence-sequence similarity calculation.

» Advantages: can generate accurate predictions for proteins
with sequence identity > 30% against a template.
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Homology Modelling Tools

»  PSI-Blast and PDB-Blast: seg-seq comparison;
»  FFAS: profile-profile comparison;
» ORFeus: add SS information to build meta-profile;

»  SAM-T99: using HMM to capture relationship between
residues, and to generate an accurate profile;




Prediction strategy 2: threading

» Basic idea: structures are usually more conserved than
sequence.

» Technique: sequence-structure similarity calculation.

» Advantage: can detect remote-homology.
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Threading Tools

» PROSPECT: adopting divide_and_conquer strategy;

» RAPTOR: using ILP optimization technique and
SVM-Regression to choose template;

»  SPARKS: using structure-driven profile;
» and others, such as mGenThreader, SAM-T02, 3D-PSSM,

etc;



Prediction strategy 3: Ab Initio

» Basic idea: Proteins tends to adopt conformations with the
minimal free energy.
» Technique: optimization.

» Advantage: can identify new fold since Ab Inition methods
don't rely on templates with known structures.



Ab Initio Tools

» ROSETTA: predicting local structure for 9-mer fragments,
and using Monte Carlo to optimization;

»  TASSER: using large fragments from threading results as
blocks;

» FB5-HMM: using FB5 technique to describe torsion angle
preference;

»  CRF-Sampler: using Conditional Random Field technique.



TASSER

F“M‘E— 4"\.!'.-: s AL
AR E o ST —

Cluster Centrosxd



Some challenges In protein structure
prediction

1. Can we represent 3D structure as a sequence of
“structural alphabet™?

2. Can we accurately predict structural alphabet for a
sequence fragment?

3. Can we efficiently assemble local structures into a
full-length structure?



Part 1

Conformational LEtter (CLE): representing
3D structure as a sequence



A simple representation of backbone: C-alpha
pseudobond angles
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The transformation from 3D
structure to 1D CLE strings
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CLESUM: Conformational LEtter SUbstitution
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Structures can be aligned efficiently through CLE.

VN w’”\

inconsistent

Similar Fragment Pairs, SFPs

« Alignment: to collect as many consistent SFPs as possible.
« Balance local similarity and global consistency.



Alignment paradigm

“A fast, reliable, and convergent method
for protein structural alignment is not yet available”
---- by Patrice Koehl at Protein Structure Classification 2006

Initial
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(anchor SFP)
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Optimal
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Two structure alignment strategies

1. Global-consistency-first

Find as much initial ROTMAT as possible, use self-consistent paradigm to
each ROTMAT, then select a maximal one with the largest similar path.
(like STRUCTAL,PROSUP)

Remark: break the consistent but fast

2. Local-similarity-first

Find as much SFP as possible, then heuristically concatenate them as a
larger consistent path as possible. (like DALI,CE)

Remark: retain the consistency but slow

Our algorithm: CLEPAPS

[1] Generate SFPs according to CLESUM score (like pointview 2)
[2] Use top k SFP as initial correspondence + self-consistent iteration
(like pointview 1)



Three main problems

1] How can we find SFPs as fast as possible? !

Initial 2] How can we avoid a pure local start?
correspondence
(Anchor SFP) | [} [3] How can we haste the convergence
I ' without local trap?
Optimal
transformation J‘

for the
correspondence

|

Correspondence
update
(adding consistent

SEPs)




[1] Using CLE and CLESUM to find SFPs

SFP => highly scored string pair

 Fast search for SFPs by string comparison

similar
Protein A H—l I
Protein B . seed i
(smaller)

« CLESUM similarity score = importance of SFPs

Guided by CLESUM scores, only a few top SFPs need to be examined
to determine the superposition for alignment, and hence a reliable greedy
strategy becomes possible.



[2] Construct ‘Star-tree’ to select the optimal Anchor-SFP

Selection of Optimal Anchor SFP

Score rank 5 1 4 2 3

Example: TopK=2; TopJ=5

Anch\ %, Ay |

SFP >
Y
) Anchor
: -~ SFP
# of consistent SFPs = 4 # of consistent SFPs = 1

Topl SFP is globally supported by three other SFPs,
while Top2 SFP is supported only by itself.



[3] Apply ‘Zoom-in’ strategy to avoid local trap

Final
Alignment




The flow chart of CLEPAPS algorithm

4 )
Find SFPs [ SFP-H __Top K for anchor Star-Tree \
By CLeSUM (width 20, Top J for neighbor Construct
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Example 1: domain-move

1kk?7 - Template structure
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Example 2: domain repeats

Acpv<>1osa

Blue structure fixed

/
N e .~ Repeat 2

L —-—

Solution [A] Solution [B]



Example 3: Symmetry

4fgf < 8ilb

Afgf
OGCCFEFAHOGEED

OGDCEDFAIOGEED
Red structure fixed

Solution [A] Solution [B]
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Summary

CLEPAPS >

1, Fast search for SFPs by merely string comparison

2, Width 20 for specificity + width 8 for sensitivity

3, Optimal Anchor SFP selected by checking consistency
4, Avoid Local Trap by 'Zoom-in’

CLEFAPS -

1, Seed-extension, 6-9 for SFP-L and 9-18 for SFP-H

2, Consistency parameters self-adaptive with the input length
3, Using some detailed refinement for ‘Zoom-in’

4, Introduce amino-acid information to improve SFP quality

Result 2
1, Both CLEPAPS and CLEFAPS runs 50-200 times faster than others
2, CLEPAPS got similar alignment length with reference,

while CLEFAPS got similar alignment accuracy.



Part 11

FRazor: accurately predict local structure for a

sequence fragment



Fragment Based Protein Structure Prediction

Fragment-based protein structure prediction is done in two major
steps:

» |dentify the building blocks, which are fragments of
known structures.

» Construct or sample the protein structure with those building
blocks using some search or simulation algorithms.



Fragment Libraries

IVLSEGRNQLVLH

» Non-Position Specific Libraries:

» Number for fragments: Vary

from dozens to hundreds.
» Length of fragments: Fixed or \/

variable lengths. Typically, no V

more than nine [Fidelis et al

1994].

» Position Specific Libraries: ROSETTA
¢ 20 .

DISTANCE = ) > " |S(aa,i)—X(aa, )|

i=1 aa=1




Fragment Libraries

» Non-Position Specific Libraries:

» Number for fragments: Vary
from dozens to hundreds.

» Length of fragments: Fixed or
variable lengths. Typically, no
more than nine [Fidelis et al

1994].
» Position Specific Libraries: ROSETTA

£ 20
DISTANCE =Y ~ > " [S(aa,i)—X(aa, /)

=1 aa=1




Problem Statement—Notations
Target sequence t of length n parsed

into sequence segments:

» A sliding window of a fixed length ¢ qe’ .
and step size 1 is used. MVLSEGEWQLVLBVWAK
., Ns :
» These segments are denoted as
get,qge®,...,qeP, p=n—C+1. M

» denote the native structural

fragments as nsl, ns?, ..., nsP.

Structural Space:

» Structural fragments to select the ‘

structural candidates for sequence
segments.

<
T
o/

> Denoted as S = {sel,se?, ..., sed}.




Problem Statement

qe’ :
Problem Definition: Given sequence MVLS?GEWQLVLHVWAK
segment ge’, integer k and k', k' < k '

o N8
and a threshold @, to select a set of M
structural fragments, denoted as SJ,-,
J

such that:

» dF; C S; with |F| > k. 4

> Vs € F, dist(s,ns’) <0, dist is
the Cav root-mean-squared

deviation. S




Generalized Linear Model-Motivation

Between each structural fragment se’

in and each sequence segment ge’, a qe X
feature vector is computed: NFVLSFGEWQLVU‘*/WAK
» Denote the feature vector as:
VJ’J:<V1IJ,...,V;J>,d:4><9, % U
1<i<gandl1<;<p

» |t measures how well se' and ge’

-9

» Each entry in V'Y may be a linear I %
or nonlinear scoring function.

> We label V'V with +1 if
dist(se', ns’) < #, and —1

otherwise.

match




Formulation—Linear Model
A general linear model has the form [Bishop 06]:

M

y(x,w) = wp + Z Wi Op (X)
k=1
\T

» w=(wp,...,wpn)' W is the weight vector or the parameters

to train, and wp is called a bias parameter and used for any
fixed offset in the data.

» X is the input data.

» (1,01,...,¢p)" are the basis functions. The basis functions
are generally nonlinear and are applied to the original data
variables.

> y(x,w) is a nonlinear function of the input variables due to
the non-linearity of the basis functions.



Formulation—Notations

» Feature v_eg:ter
IJ i
V j — <V 5= ey d >
» to measure the similarity
between a structural fragment
se' and sequence segment gel
» —1<vd <1
» Each structural fragment se’ is
associated with a weight vector
i i I
W _<W1?"'?Wd)'
» distance between se’ and ge/ is:
D' = Z; LWV '

Objectwe To adjust
W' = (wj{,...,w/) so that some

“native-like” structure for ae/. DY is

qel
MVLSEGEWQLVLHVWAK

o




Formulation

For 1 </ < g, indexing the structural space and 1 < < p, indexing the
sequence segments, the ILP is as follows:

p
min E g
j=1

JD”J'J — DJ‘J i d”jvaj(z —+ E) — €, ”j < Qj-_u‘r. % QJ*VJ

Y dyi < k=141 (q— (k1)) ne Q.Y
1<i<q.i¢ Q)
Y fi < -1+g, V)
n Qi
d
Zw{ <1, V)

Ay fy i & € 10,1}, w) € [0.1]



V'Y totally four types of basis functions are defined, each of which
contains nine items:

» Mutation Scores.

20

S(aa,i) x lo — (1)
, & S(aa, i)

Ja—=

» Secondary Structure Score.

» If the secondary structure type of se[i] is a-helix, then we use
X

» If the secondary structure type of se[i] is 3-sheet, then we use
Bi

» |f it is loop, we just use /;.
» Contact Capacity Score.

» Environmental Fitness Score.



Basis Functions—Heuristics to solve the formulation

Cplex is used to solve the problem. Following heuristics are used
when problem size is large and to avoid over-fitting.

» Parameters are justified for each (sub) structural fragment.

» Combine the parameters from each fragments.



Our data set consists of three parts:

» Structural Space: the collection of structural fragments to

select the candidate structural fragments. It is made from 40
protein chains

» Training Set: the fragments used to justify parameters. it is
made from 30 protein chains. The proteins for Structure
Space and Training Set are both from a non-homologous (less
than 30% homology) list with resolution < 2A, dated on
March 26", 2006.

» Testing Set, proteins for evaluating our method Proteins from

CASP 7.



Position Coverage for CBM vs. FRazor’s Score

Function
c-Helix 3-Sheet Loop Owverall
o (A) CBM FRazor CEM FRazor CBEM FRazor CEM FRazor
0.5 042 95.1 10.0 7.6 26.6 38.7 49.4 h5.1
1 08.2 08.6 h6.4 80.6 565 78.1 72.2 88.2
1.5 99.7 09.7 89.3 08.2 81.3 03.3 89.9 06.7
2 100 100 99.7 99.8 96.9 98.9 98.6 99.4
25 100 100 99.9 499.9 990.7 a0.7 99.8 09.8
3 100 100 100 100 90.9 100 99.9 100
3.5 100 100 100 100 100 100 100 100

position coverage: The percentage of the positions which are correctly predicted.



Position Coverage for Threshold Value as 1A.

a-Helix F-Sheet Loop Overall
k CMBE FRazor CMB FRazor CMB FRazor CMB FRazor
5 90.5 96.6 34.2 65.6 40.3 £9.8 60.7 75.1
10 97.2 97.5 42.4 79.1 46.1 67.9 65.1 81.5
15 07.8 99.3 49.5 82.1 50.6 70.5 68.6 85.0
20 08.1 98.0 £53.0 85h.1 3.5 73.0 70.8 86.4
25 08.2 98.6 6.4 89.6 Lh.5 78.1 72.2 86.4
30 08.3 98.7 £59.9 90.8 57.4 79.6 73.6 88.2
35 08.5 98.8 61.5 92.0 L8.b 81.1 74.5 90.0

40 98.7 99.0 63.5 92.9 59.5 62.3 75.4 90.8



Customized Fragment Lists vs. Independent (Kolodny) Fragment
Libraries

Fragment Coverage (%) Local Fit Score (A)
L or k KFL FRazor KFL FRazor
25 - 45.3 - 0.763
50 36.2 40.5 0.754 0.667
100 40.7 55.7 0.673
150 433 58.6 0.633 0.554
200 44.0 60.4 0.603 0.531

250 46.3 61.8 0.515



Decoy quality comparison between ROSETTA and FRazor

Target Protein

PDB code L
1FC2 43
1ENH 54
2GB1 56
2CRO 65
1CTF 68
41CB 76

The % of good decoys were improved for five out of six targets.
The average RMSD values were improved for four out of six targets.
The best RMSD values were improved for three out of six targets.

ROSETTA FRazor
<6.0A(%) Best  Avg. <6.0A(%) Best  Avg.
2.59 7.3 38.6 2.60 6.4
3.06 7.3 53.8 2.61 6.4
1.88 4.3 90.6 2.04 1.4
3.02 6.7 67.2 2.57 5.8
3.42 9.1 11.0 3.14 6.4
4.74 9.4 2.6 4.81 9.0



Part 111

FALCON: assemble local fragments into
full-length structure through sampling



ROSETTA

» Basic idea: predicting 200 local structure candidates for each
O-mer fragment, and then assembling the local structures into
a full-length structure.

» Technique: using Monte Carlo technique to optimize an
energy function.

» Pros and cons: the discreteness of search space implies the
failure to cover the continuous conformation space. A small

error of torsion angle usually incur a great RMSD.

—_— — —
(g) Predicting 200 local (h) Assembling into a
structures for each 9-mer full-length structure.

fragment.



Our method: Fragment-HMM

Biological Insight: protein structure is result of the combination of
two types of interactions:

» Local Interaction: forming local structural preference;

» Global Interaction: put all local structures into their correct
positions to minimize energy.

Questions:
» How to describe the local structural preference?

» How to capture the dependence generated by long-distance
Interactions”?



FALCON's paradigm

Basic idea: sampling out a full-length structure that meets local
structural preference of all amino acids. More specifically,

1. for residue /, we use Cosine models to describe the
distribution of its torsion angle (¢;,v;);.
2. we employ a position specific HMM to describe the

dependence between neighboring residues;

3. after training the position specific HMM, we sample out
(¢, ;) for residue i, and use an energy function to evaluate
the generated decoys;

4. tinally the generated decoys are fed back to generate more
accurate torsion angle estimation until convergence.



FALCON's schema

i APKKLMHPSTCILMGAUFYWHRH

Step1: Local Structure Preidction

Step 2: Torsion Angle Distribution

G

‘ [teration

Step 3: Structure Sampling




Technique 1: Cosine Model

The probability density function of Cosine model is specified by
five parameters k1, k2, K3, 1 and v:

f(gb w] _ C(Hl, Ko, 533)5*"—"1 cos(¢p—p )+ a cos(w —v)+ k3 cos(d—p—1p+1)

where f is the mean value of ¢, v is the mean value of 9, and
c(#1, k2, K3) is a normalization constant:

c(K1.h2,63) " =
(2?T)2 In(k1)lo(K2)lo(K3) + 2 Z o (k1)1 (R2) 1 (k3)
p=1

in which /,(x) is the modified Bessel function of the first kind and
order r.



von Mises distribution




An Example: local structural preference of K13 of protein
1CTF
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Other approaches to describe local preference.

180
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(i) Gong's method (j) Shortle's method



Technique 2: Position-specific HMM

Model Topology: residues have specific hidden nodes and

transition probabilities.




Structure of Fragment-HMM

» Hidden node: each hidden node corresponds to a Cosine
model;
» Transition probability:

Pr.(h € Hiy1,h € H))
Pr.(h € Hij1lh e Hy) = '
( 1] ) >we,, Pr-(he Hi, W € Hiyq)

where

‘o7 2heH, reH., §n(9)&w(q)



Technique 3: Primal_Dual optimization technique

man(@irl \ T;",’l \ {}52,_ T;'L’g_, seny (ﬁln,_ T;",’n)

sit. (dii)e.t.f,

» Primal step: sampling the full-length structure based on
distribution f;, and using energy function to direct search
process and to meet global interaction requirements;

» Dual step: re-calculating the distribution from the generated
good decoys, i.e., reshaping local structural biases;

Advantage over Monte Carlo/Local Search: search space can be

significantly narrowed down.



Essence: problem transformation

Discrete optimization => sampling approach to continous
optimization problem

minE(x1, X2, ..., Xn) sample x1, X, ""X"

— —E(x1,X2,...,Xn)
s.t.x; €5, |5 =200 W P(xl :(zx--e--;n)— Le~Ebar,



Experimental results

Data Set
» We use the six proteins that were used in previous studies :

Protein A (code 1FC2), Homeodomain (code 1ENH), Protein
G (code 2GB1), Cro repressor (code 2CRO), Protein L7/L12

(code 1CTF) and Calbidin (code 4ICB).
» We further test FALCON on eight larger proteins with over
100 residues.



Result 1: How many states can a residue adopt?

Table: The number of Cosine models per residue. Column 2 is length.
Column 3 is the number of a-helices and F-strand. Column 4-7 are
numbers of residues with 1,2,3,4 Cosine models, respectively. Column 8
is the average number of Cosine models per residue.

Target Protein # Residue
Name,PDB code L «a,f 1 2 3 4 Ave.
Protein A, 1FC2 43 20 12 25 3 2 1.66

Homeodomain, 1IENH 54 20 24 24 6 0 1.21
Protein G, 2GB1 56 14 28 21 7 0 1.63
Cro repressor, 2CRO 65 5,0 b2 12 1 0 1.22
Protein L7/L12, 1ICTF 68 3,3 50 14 3 1 1.34
Calbidin, 4ICB 76 40 47 23 3 3 150




how many structural conformation can a protein adopt?

The number of possible protein conformations (or search space):
» C = 200" by ROSETTA.
» C = 75" by Hamelryck et al.
» C =1.66" by FALCON.
» C = 1.6" by Sims and Kim, Dill, et al.
This observation suggests that:

1. Local structural preference significantly limit the number of
possible structural conformations.

2. It is possible to sample a native-like structure since the search
space is significantly narrowed donw.



Result 2: Discrete optimization vs. continuous
optimization, which one is better?

Table: Decoy quality of ROSETTA and FALCON. Column 2-3: RMSD of
the best decoy (A) and percentage of the good decoys (RMSD< 6A) for
ROSETTA. Column 4-5: corresponding values for FALCON.

Target Protein ROSETTA FALCON

Best <6.0A(%) Best <6.0A(%)
Protein A, 1FC2 2.82 80.2 2.64 94.3
Homeodomain, 1IENH 1.52 04 4 1.81 02 .8
Protein G, 2GB1 2.21 53.7 2.18 93.4
Cro repressor, 2CRO 2.56 70.4 2 .48 75.8
Protein L7/L12, 1CTF 1.44 14.3 0.56 25.6
Calbidin, 41CB 3.87 19.9 2.93 46.3




The decoy quality increases as iteration proceeds.

Energy function was used to capture global interactions, and
therefore may help to reshape the local biases.

Table: RMSD distribution over iterations for protein 2CRO. Col. 2-7:
Percentages of decoys with RMSD values in the corresponding intervals.

##lterations
RMSD (A) 1 D 3 4 5 6
0, 3) 0.1 0 0.1 0.1 0 0
3,4) 228 472 (53 879 0947 0490
4,5) 415 454 245 120 5.3 5.1
5.6) 114 47 01 0 0 0
6,7) 85 08 0 0 0 0

[7,0) 157 15 0 0 0 0




The “"Good decoy’ ratio also increases as iteration
proceeds, and can reach 100% on the six proteins.

Table: Percentage of good decoys with RMSD below 6A after each

iteration.
Target Protein # lterations
1 2 3 4 5 6
Protein A, 1FC2 9043 985 100 100 100 100
Homeodomain, 1IENH 9028 950 969 100 100 100
Protein G, 2GB1 034 964 100 100 100 100
Cro repressor, 2CRO 758 97.3 100 100 100 100

Protein L7/L12, 1CTF 256 68.8 97.0 100 100 100
Calbidin, 41CB 46.3 90,5 99.3 100 100 100




Reshaping Local Bias: lteration 1
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(k) lteration #1: Two Cosine models centered at
(—1.55, —0.28) and (—1.58, 2.57).



Reshaping Local Bias: Iteration 2

(1) Iteration #2: Three Cosine models centered at
(—1.25, —0.52), (—1.75,1.26), and (—1.82, —0.07).



Reshaping Local Bias: lteration 3

(m) lteration #3: Two Cosine models centered at
(—1.22, —0.44) and (—1.82,0.00).



Reshaping Local Bias: Iteration 4

(n) Iteration #4: One Cosine model centered at
(—1.84, —0.11).



Result 4: the quality of the final prediction results.

Table: Quality of the finally reported decoys of ROSETTA and FALCON
for the six benchmark proteins. Column 2-3: RMSD (A) of the finally
chosen decoys of ROSETTA and FALCON.

Target Protein ROSETTA FALCON
Protein A, 1FC2 3.660 3.652
Homeodomain, 1ENH 2.717 2.464
Protein G, 2GB1 2.755 3.323
Cro repressor, 2CRO 3.997 3477
Protein L7/L12, 1CTF 8.327 3.035
Calbidin, 4ICB 4.866 4.770




Experimental results on CASP-7 targets.

Table: Quality of the finally reported decoys of ROSETTA and FALCON
for eight larger proteins from CASP7 free modeling targets. Column 4-5:
RMSD (A) of the finally chosen decoys of ROSETTA and FALCON.

Target Protein PDB Entry Length ROSETTA FALCON
10283 2HH6 112 11.544 11.083
10300 2H3R 102 7.557 9.282
10307 2H5N 133 14.822 16.343
10327 2HGC 102 9.394 11.149
10350 2HCS 117 10.635 7.406
10354 21D1 130 11.254 8.085
10361 2HKT 169 20.009 12.225
10373 2HR3 147 19.097 14.224




Example 1: prediction results for 1IFB (RMSD= < 2.0A)

(o) The  native (p) The final decoy (q) The best decoy
structure of protein reported by FAL- reported by FAL-
11FB. CON. CON.

Figure: The Native Structure, the Final Decoy, and the Best Decoy
Reported by by FALCON.



Example 2: prediction result for 1ICTF (RMSD: 0.557A)

(a) The native structure of (b) The predicted structure
protein 1CTF. of protein 1CTF.

Figure: The Native Structure and the Best Decoy Predicted by FALCON.
The RMSD is 0.557A.



Summary

1. discrete optimization=- continuous optimization: in principle
can explore all the conformation space;

2. Monte Carlo=-Primal Dual: the search space is reduced from
O(200") to O(1.66"); thus, the probability to sample a

native-like conformation is increased.

3. FALCON was ranked 3rd in the FR-Hard category in CASPS8.



Ongoing...

» |dentifying sampling bottlenecks: some fragments are forced
segments since their local structural preference is changed by
global interaction.

» |Improving predictions for proteins with complex topology.

» Designing a more accurate energy function.
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