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m Data quality control for peptide identification
In shotgun proteomics

m Evaluation of the effects of decoy design,
search strategy, and mass tolerance on the
accuracy and sensitivity of peptide
Identifications in shotgun proteomics



Data quality control for peptide
identification in shotgun proteomics



Shotgun proteomics for peptide and protein identification

Sample
Extraction l

Protein mixture

Digestion l

Peptide mixture
MS sequence l

MS/MS spectra

Peptide
identification

Peptide sequence

Peptide grouping

Analyze complex protein mixtures
using shotgun proteomics

* Simplify MS/MS
seqguencing

data throughput

* Lost connectivity between
peptides and proteins

« Simplify sample handling| « Complicate computational
and increase the overall | analysis and biological

interpretation

v

Implicated database proteins

Protein inference

Identified proteins

j> Quality control in data
analysis process

Annotation

Biological
conclusion

Mol Cell Proteomics.
2005, 4(10):1419-40




Our focus

« Our group has been systematically studying the validation of
database search results identified by shotgun proteomics.

— Anew strategy to filter out false positive identifications of peptides in
SEQUEST database search results. Proteomics. 2007 19;7(22):4036-44.

— A nonparametric model for quality control of database search results in
shotgun proteomics. BMC Bioinformatics 2008, 9:29.

— Mass measurement errors of Fourier-transform mass spectrometry (FTMS):
distribution, recalibration, and application. J Proteome Res. 2009
Feb;8(2):849-59.

— Bayesian nonparametric model for the validation of peptide identification in
shotgun proteomics. Mol. Cell. proteomics. 2009, 8(3): 547-57.

— Combination of new features improves peptide identification by Mascot in
shotgun proteomics. (Proteomics, accepted)

« Make use of available features which were typically ignored could

benefit data analysis process.

« Combination of new features with an appropriate framework can
Improve the sensitivity of the filtration methods.



Quality control of peptide identification in shotgun proteomics
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Mass measurement errors of Fourier-transform
mass spectrometry (FTMS): distribution,
recalibration, and application

« Conducted a comprehensive investigation of the

distribution of precursor ion mass error for the LTQ-FT
platform;

* Developed an automatic GUI software tool, FTDR, for the
recalibration of LTQ-FT MS data;

* Proposed and applied a new strategy LDSF to recalibrate
the MS/MS data and improve peptide identification.



Improve the mass recalibration of FTMS data

* An improved recalibration formula:
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LDSF - Large MET _database search followed by
small MET filtration
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LDSF can improve the sensitivity of the result
validation procedure
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The preserved regions of the database search results of the control protein data set
using mass calibration with small-MET (left) and large-MET (right) strategies.
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 The database search scores become more powerful In

distinguishing the peptide identifications and thus improve the
sensitivity of the cutoff-based method.



LDSF can increase the validated peptide number

Calibration + 2 ppm MET Calibration + 3.0 Da MET
38326 39745
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« Using LDSF strategy, we observed 10,920 validated peptides;
this was 14.3% more than for the small MET database search,
which yielded 9,550 validated assignments.

J Proteome Res. 2009 Feb;8(2):849-859.



Improvements of the filter methods of
peptide identification in SEQUEST
database search results

* A new strategy to filter out false positive identifications of
peptides in SEQUEST database search results

* A nonparametric model for quality control of database
search results in shotgun proteomics

e Bayesian nonparametric model for the validation of
peptide identification in shotgun proteomics



Peptide identified by SEQUEST

« Without any filtering, there would be many false positive
aSS|gnmentS W|th|n the reSUH:S Of SEQUEST (J Am Soc Mass Spectrum.

2002, 13(4):378-386. Anal. Chem. 2002, 74(21):5593-5599. Mol Cell Proteomics. 2004, 9(4):173~181.)

« Many works on the validation of SEQUEST database search

results have been published, but each has its own shortage.
— Empirical cut-off based method
» Lack appropriate statistical foundations and good explanations
— Probability models based methods
» PeptideProphet
— Machine learning models methods

» Depend intensively on the quality of the selected characters as well as
training set composition.

— Randomized database based methods

* It evaluate the quality of resulting dataset as a whole, which could not
detect the accuracy of each assignment



A new strategy to filter out false positive
Identifications of peptides in SEQUEST
database search results

« Based on the randomized database method, a linear
discriminant function (LDF) model is proposed to filter out
false positive matches in SEQUEST database search
results.

 The LDF model takes into account the dynamic tradeoff
between Xcorr and ACn through the use of a filtering
boundary: ACn = k (b-Xcore).

* The coefficients (k, b) pairs are determined by keeping
the FDR fixed and maximizing the number of normal
database matches after filtration.



The filter boundaries derived from the
LDF model

""" N7 AT e The filtration was
Bprpe N ER0g b gpplied to the +1, +2,
N\t sRit and +3 charge state
gt .,-, data respectively
#\ii.i"3 «  The red and blue points
il 5 6 7 are the normal and

randomized database
matches

« The red and blue line is
the LDFs at FDR of 0.05
and 0.01.




aCn

Comparing preserving regions on Xcorr—
ACn plane determined by three filtering

methods

Xcorr

Proteomics. 2007 19;7(22):4036-4044.

The LDF model
gives the largest
acceptance regions

- AB,C,D,E,anda
small unlabeled
triangle in the
center.

Method 1: fixed ACn
— C, D, and G.

Method 2: optimal
Xcorr and ACn

— B, C,and F



A nonparametric model for quality control of
database search results in shotgun
proteomics

« The nonparametric model uses the nonparametric density
estimation technique to estimate the distribution of the
database search scores and takes the contour lines as the
candidate discriminant functions to filter out false positive
results.

— More flexible: the number and nature of the parameters are
not fixed in advance.

— More accurate: the distribution of multiple parameters can
be fit directly with considerable accuracy.

— More sensitive: this nonparametric statistical technique is a
powerful tool for tackling the complexity and diversity of
datasets in shotgun proteomics.



Nonlinear filter boundaries on Xcorr—ACn plane
by nonparametric model
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« Inferred filter boundaries for different charge state observations in the
control dataset. The red and green curves are the filter boundaries for
FPR = 0.01 and for FPR = 0.05, respectively.



Performing classification in a high-dimension
feature space

The nonparametric model
can provide greater
discriminating power by
Incorporating more features

— Xcorr, ACn and SimScore

i 3 Avary

« Comparison of the confirmed
matches among different method

— M1, cutoff-based method
— M2, peptideProphet
— M3, nonparametric model

« The nonparametric model has the
highest sensitivity

BMC Bioinformatics 2008, 9:29.



Bayesian nonparametric model for the
validation of peptide identification in shotgun
proteomics

 If too many parameters are used, the nonparametric
model will encounter a computational problem.

 We developed a Bayesian nonparametric model (BNP) to
filter the false positive matches in shotgun proteomics

database searching.
— Integrate a large number of features

— Model the probability structure from the target—decoy database
search results, and automatically classify the results

— High power to separate correct from incorrect assignments
— Greatly increase the number of confirmed peptides and proteins.



Workflow of Bayesian nonparametric model
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The sensitivity of the BNP model surpassed
that of three other filter methods

Comparison of four filter methods on control data sets

Expected FDR = 5%

Expected FDR = 1%

Dataset?® Method®  Actual Sensitivity ~ Actual Sensitivit
FPR (%) Total/Correct (%) y FPR (%) Total/Correct (%) y
M1 2.23 719/703 78.29 0.53 567/564 62.81
D1 M2 2.59 733/714 79.51 0.89 674/668 74.39
M3 2.20 820/802 89.31 0.40 758/755 84.08
M4 2.72 810/788 87.75 1.39 722/712 79.29
M1 1.92 5875/5762 68.20 0.36 4964/4946 58.54
D2 M2 2.17 6775/6628 78.45 0.51 5895/5865 69.42
M3 3.16 7426/7191 85.11 1.04 6754/6684 79.11
M4 1.91 7001/6867 81.28 0.55 6333/6298 74.54
M1 0.13 10284/10271 74.80 0.03 9182/9179 83.70
D3 M2 0.42 11477/11429 93.14 0.17 10699/10681 87.04
M3 0.50 11983/11923 97.16 0.09 11388/11378 92.72
M4 0.32 10885/10850 88.42 0.16 10117/10101 82.32

a D1: LCQ control dataset; D2: LTQ control dataset; D3: LTQ/FT control dataset

b M1: Cutoff-based method; M2: PeptideProphet; M3: BNP model; M4: Nonparametric model.

« Under the 1% expected FDR, the BNP model validated
about 5% ~ 36% more peptides than other methods.




The peptides confirmed by the BNP model
represented more than 90% of other three
methods

LCQ

FPR=0.01 M3 M4
9237 42908 1694

LTQ/FT

" M4 M3
3028 12869 3394
M2

Overlap of peptides identified by the four methods.

M1: Cutoff based method; M2: PeptideProphet;
M3: BNP model; M4: Nonparametric model.



Peptide identified by Mascot

Majority of the proposed filter methods for Mascot have been
based on the ion score and thresholds reported by this search
engine.

— mass accuracy—based threshold (MATH) (J. Proteome Res. 2005, 4, (4), 1353-1360.)

— empirical Mascot homology threshold (MHT) (Mol. Cell. Proteomics 2008, 7, (5), 962-
970.)

— transformed E-value (Biol. Direct 2007, 2, (26).)
The *.dat files output by Mascot contain extensive information.

oo 3.99% « The Mascot identity threshold
= 501

12000 - - rp T (MIT) can control the FDR of
5 10000 3.06% search results strictly.
< 5
£ 8000 ¢ — — low sensitivity
=
g o0 3739, | — lost a great deal of true results
£ 4000 120 7979
== . B

2000 31;2/0 3097

0 506

LCQ QTOF FI/LTQ  LIQ



Combination of new features improves
peptide identification by Mascot In
shotgun proteomics

On the basis of target-decoy search strategy

Introduce new features to improve the discriminant
power of the Mascot search score

Apply robust filter methods to improve the sensitivity
of result validation

-

Improve the filter process
of Mascot search results




New features to improve the discriminant
power of the Mascot search score

« Define the delta score for Mascot
— AS = 1-Score,/Score;

 Filtration of Mascot search results on the Score-AS plane
— The cutoff based method

— linear discriminate function (LDF) filtering boundary
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and LDF model for LTQ-FT control data set




Application of BNP model to validate Mascot
database search results

R T 14000 7 16.5%
14000 1 12000 - T e e
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Plot figures of the number of correctly identified peptides vs. the estimated FDR on LTQ control
data set (D2, left) and FT/LTQ control data set (D4, right).

» Atotal of 28 features are combined by BNP model to improve the
validation of database search results for Mascot searched files

 The BNP model validated more correctly identified peptides than the
other three methods.



Comparative evaluation of filter methods on
complex data sets

Expected FDR = 5%

Expected FDR = 1%

Dataset  Method? Conf_irmed Non-.redundant Conf_irmed Non-_redundant
Peptides / More Peptides / More peptides / More peptides / More
than MIT (%) than MIT (%) than MIT (%) than MIT (%)

M1 12,309/0.00 2,071/0.00 10,199/0.00 1,787/0.00

M2 16,586/34.75  2,824/36.36  14,375/40.95  2,425/35.70

LTQ M3 16,931/37.55  2,903/40.17  14,462/41.80  2,440/36.54
M4 17,144/39.28  2,964/43.12  14,683/43.97  2,465/37.94

M5 19,311/56.89 3,458/66.97  16,632/63.07  2,777/55.40

M1 75,041/0.00 4,636/0.00 58,261/0.00 3,741/0.00

M2 102,270/36.29  5,829/25.73  79,359/36.21  4,559/21.87

LTQ-FT M3 101,337/35.04 10,211/120.25 73,999/27.01  5,994/60.22
M4 101,413/35.14 10,230/120.66 78,275/34.35  6,699/79.07

M5 117,886/57.10 11,812/154.79 88,459/51.83 6,966/86.21

a:- M1, MIT; M2, MATH; M3, cutoff - based method; M4, LDF model; M5, BNP model.

Determination of the filtering criteria for the Score-AS two dimension
feature space was more sensitive than that for the Mascot score;

The BNP model yielded approximately up to 64% more total results than

Mascot threshold methods
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Evaluation of the effects of decoy design,
search strategy, and mass tolerance on the
accuracy and sensitivity of peptide
identifications in shotgun proteomics



Target-decoy search strategy

— target
- - decoy

Correct

.LLlLLMLtJ

Normalized frequency
== ]
>

Incorrect

ﬂoﬂl{dl > S;' :1121""md}|

E{FDR(s)} = — u q(s)=min__ E{FDR(s )}

I{t. >s,1=12,....,m}|
Hypothesis: Incorrect Peptide-Sequence-Matches(PSMs) from
target or decoy sequences are equally likely.

Elias, J.E. and S.P. Gygi, Nat Methods, 2007. 4(3): p. 207-214
Kall, L., et al., Nat Methods, 2007. 4(11): p. 923-925



Number of estimated correct PSMs

st}

Mumber of PSMs identified

Percolator- Improve the sensitivity of peptide identifications
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Kall, L., et al., Nat Methods,
2007. 4(11): p. 923-925
Brosch, M., et al., J Proteome
Res, 2009. 8(6): p. 3176-81.



Wide precursor mass tolerance may improve the
sensitivity of peptide identification

B
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However, will the accuracy of FDR/g-value estimations be

affected if we broaden the precursor mass tolerance?

Hsieh, E.J., et al., J Proteome Res, 2010. 9(2): p. 1138-1143
Joo, JW,, et al., J Proteome Res, 2010. 9(2): 1150-1156



Potential influencing factors

Decoy design

Search strategy

Precursor mass tolerance
Quality control (QC) method

We aim to find the appropriate decoy design, search
strategy, and precursor mass tolerance to achieve both

accurate and sensitive peptide identifications

Blanco, L., J.A. Mead, and C. Bessant, J Proteome Res, 2009. 8(4): p. 1782-1791
Wang, G., et al., Anal Chem, 2009. 81(1): p. 146-159

Timm, W., et al., Anal Chem, 2010. 82(10): p. 3977-3980

Higdon, R., et al., OMICS, 2005. 9(4): p. 364-379



Datasets

D1 (8191 spectra): a protein standard dataset comes from a set of
48 human proteins (Sigma, Universal Proteomics Standard Set
UPS1). The sample was tryptic-digested. The raw data was
generated by LTQ-FT mass spectrometry.

D2 (24403 spectra): a complex sample dataset comes from
human liver tissue. The sample was tryptic-digested, and
analyzed by LTQ-FT.

Brosch, M., et al., J Proteome Res, 2009. 8(6): p. 3176-3181



The workflow of
g-value accuracy evaluation

D1: MS/MS

Sppm — —— RND
20ppm — —— RNDTP
100ppm Parention . \ascoT <—|: Decoy DB — ey
500ppm— mass tolerance Target DB I .RE‘J
1Da—
2Da— —— REVTP
v v
Cs SS

MHT PPD/MP MIT

¢ { ¢

RMSE of estimated g-values calculation

¢

ANOVA and multiple comparison

¢

The optimal decoy design, search strategy,
and precursor mass tolerance

D1: 203 MASCOT searches



Methods

* Influence factors

— Decoy design
| |Random |Shuffle  |Reverse |
Protein RMD SHF REV
Tryptic Peptide RMNDTP SHFTP REVTP

— Search strategy
* Separate vs. Composite search (SS vs. CS)

— Precursor mass tolerance
* 5ppm, 20ppm, 50ppm, 100ppm, 500ppm, 1Da, 2Da
— QC method

* Multiple features
— PPDistiller (PPD): PTM and Peptide Distiller
— MP: MASCOT Percolator

* Single feature
— MIT: MASCOT identity threshold
— MHT: MASCOT homology threshold

* Metrics evaluating the accuracy of g-value estimation

RMSE = [ = 3 (0 (6) — 0oy (1))’

M, ig12,..m3

*  ANOVA and multiple comparison



PPDistiller (PPD)

MP is limited to 200
: _ 00 |-MP PPD

processing SS results g Lo T ]

.. i 12 00 1ot
PPDistiller 5 o | Al [awor
— 36 features ! o =l -
— Percolator i -
— Process SS and CS results - & s

° A A
PPDistiller can generate

more accurate g-va I ues Figure S1A. The RMSEs of estimated g-values generated

by MP and PPD for separate search results



PPD is better than MP for it can generate more accurate g-values,
RMSE increases with the increase of precursor mass tolerances
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Figure S1B. Multiple comparison
RMSE means of g-values generated by
MP and PPD
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Figure S1C. Multiple comparison RMSE
means of g-values for the 2-factor
interaction: QC method*Precursor mass
tolerance
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The g-value RMSEs for PPD, MHT and MIT
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® Decoy design
®For SS results, REV and REVTP were
better than other decoy designs
®For CS results, there was no significant
difference between different decoy
designs except for REV

®Search strategy
® Composite search was better than
separate search

® The decoy design and search
strategy effects were reproducible
across three QC methods

Figure 1. RM3E means histograms of estimated g-values for various decoy designs, precursor
miass tolerance settings, and quality control methods. The emmor bars represent standard
deviations generated by repeatedly database searching for each copies of the stochastic decoy
designs: RND, RNDTF, 5HF, and SHFTP. A: the histogram of RMSE means generated by PPD; B: the
histogram of RMSE means generated by MHT, C: the histogram of RMSE means generated by MIT.



ANOVA analysis

Analysis of Variance of RMSE of esimated g-values generated by
PPD,MHT,MIT(%), 2-factor interaction effects

Sum Mean
Source d.f. F Prob>F

Sq. Sq.

DecoyDesign
ParentMassTolerance
SearchStrategy

DecoyDesign*QualityControl

ParentMassTolerance*SearchStrategy

ParentMassTolerance*QualityControl
SearchStrategy*QualityControl

Decoy design, search strategy, and precursor
mass tolerance significantly affected the g-

Most of the two-factor interactions
value accuracy

significantly affected the g-value accuracy



Accuracy: decoy design
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 REVTP was significantly better than RND and SHFTP
* Decoy design*Search strategy

* For SS results, REV and REVTP was significantly better than the
stochastic methods (i.e. RND, RNDTP, SHF and SHFTP)

* For CSresults, except for REV, there was no significant difference
between the other five decoy designs



Accuracy: search strategy
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® CS was significantly better than SS . This effect was reproducible
across different decoy designs (except for REV), mass tolerances and
QC methods

® CS minimized the differences between different decoy designs,
and eliminated the differences between different mass tolerances



Accuracy: precursor mass tolerance
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Summary
g-value accuracy evaluation

 Composite search is better than separate search. It
can minimize or eliminate the differences between
different decoy designs and precursor mass tolerances

* For composite search, except for REV, the other five
make no difference. In separate search, REV and
REVTP are better than the stochastic methods

* For composite search, precursor mass tolerance
doesn’t affected the g-value accuracy; For SS and PPD,
narrow precursor mass tolerance can generate more
accurate g-values



The sensitivity comparison

D2 (24403 spectra)

— Human liver tissue
— Tryptic-digested
— LTQ-FT
e QC method: PPD, MP
— Decoy design
— Search strategy
— Precursor mass tolerance
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Figure 4. Sensitivity comparison of peptide identifications generated from different decoy
designs. The dataset is HLFT. The number of estimated correct P5SMs was plotted against
each g-value threshold generated by (A) MASCOT Percolator (MFP), [B) PPDistiller for separate
search and (C) PPDistiller for composite search.

For MP and PPD (either in SS or CS mode),
different decoy designs achieved similar or
| at least compatible sensitivity, especially
e | when g-value < 0.1

Parent mass tolerance: 20 ppm



Sensitivity: search strategy
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Figure 5. Sensitivity comparison of peptide identifications generated from composite and
separate search. The parent mass tolerance was set as 20 ppm. Descoy database was
designed using REVTP methed. g-values were derived from MASCOT Percolator (MP),
PPCstiller in composite search and separate search.

® PPD achieved similar sensitivity with MP

® More peptide identifications were obtained from CS results
when g-value > 0.1;

® When g-value < 0.1, CS and SS made no difference

Decoy design: REVTP
Parent mass tolerance: 20 ppm



Sensitivity: precursor mass tolerance

10808
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Figure 6. |4) Sensitivity comparison of peptide identification penerated from seven parent
miass toderances. (B) The distribution of g-value with precursor mass error (in Daltons). PPD
in C5 mode was used.

® The sensitivity improved with the
wide precursor mass tolerance. E.g.
when g-value < 1%, when setting at 2
Da, 33% more peptides were
obtained compared with 20 ppm,
and about 5-fold more peptides were
obtained compared with 5 ppm

® The mass error distribution
indicated the main contributions to
the peptide identifications might
come from the spectra with miss-
assigned monoisotopic masses

QC method: PPD
Search strategy: CS
Decoy design: REVTP



Conclusions

For high mass accuracy data, when PPDistiller is applied

— Reversing tryptic peptide (REVTP) is recommended for
tryptic-digested sample data, because different decoy
designs achieved similar or at least compatible sensitivity,
but REVTP generated more accurate estimated g-values

— Composite search is recommended, because it generated
more accurate g-values without compromising the
sensitivity

— Reasonable wide precursor mass tolerance is
recommended, because the sensitivity improved with wide
precursor mass tolerances, and the precursor mass
tolerance didn’t affected the accuracy of estimated g-values
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